Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 9(1): e87353, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498082

RESUMO

The candidate phylum Poribacteria is one of the most dominant and widespread members of the microbial communities residing within marine sponges. Cell compartmentalization had been postulated along with their discovery about a decade ago and their phylogenetic association to the Planctomycetes, Verrucomicrobia, Chlamydiae superphylum was proposed soon thereafter. In the present study we revised these features based on genomic data obtained from six poribacterial single cells. We propose that Poribacteria form a distinct monophyletic phylum contiguous to the PVC superphylum together with other candidate phyla. Our genomic analyses supported the possibility of cell compartmentalization in form of bacterial microcompartments. Further analyses of eukaryote-like protein domains stressed the importance of such proteins with features including tetratricopeptide repeats, leucin rich repeats as well as low density lipoproteins receptor repeats, the latter of which are reported here for the first time from a sponge symbiont. Finally, examining the most abundant protein domain family on poribacterial genomes revealed diverse phyH family proteins, some of which may be related to dissolved organic posphorus uptake.


Assuntos
Bactérias/genética , Genômica/métodos , Poríferos/microbiologia , Análise de Célula Única/métodos , Animais , Bactérias/classificação , Bactérias/citologia , Proteínas de Bactérias/genética , Variação Genética , Genoma Bacteriano/genética , Filogenia , RNA Ribossômico 16S/genética
2.
ISME J ; 7(12): 2287-300, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23842652

RESUMO

Many marine sponges are hosts to dense and phylogenetically diverse microbial communities that are located in the extracellular matrix of the animal. The candidate phylum Poribacteria is a predominant member of the sponge microbiome and its representatives are nearly exclusively found in sponges. Here we used single-cell genomics to obtain comprehensive insights into the metabolic potential of individual poribacterial cells representing three distinct phylogenetic groups within Poribacteria. Genome sizes were up to 5.4 Mbp and genome coverage was as high as 98.5%. Common features of the poribacterial genomes indicated that heterotrophy is likely to be of importance for this bacterial candidate phylum. Carbohydrate-active enzyme database screening and further detailed analysis of carbohydrate metabolism suggested the ability to degrade diverse carbohydrate sources likely originating from seawater and from the host itself. The presence of uronic acid degradation pathways as well as several specific sulfatases provides strong support that Poribacteria degrade glycosaminoglycan chains of proteoglycans, which are important components of the sponge host matrix. Dominant glycoside hydrolase families further suggest degradation of other glycoproteins in the host matrix. We therefore propose that Poribacteria are well adapted to an existence in the sponge extracellular matrix. Poribacteria may be viewed as efficient scavengers and recyclers of a particular suite of carbon compounds that are unique to sponges as microbial ecosystems.


Assuntos
Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos , Metabolismo dos Carboidratos/genética , Genoma Bacteriano , Poríferos/microbiologia , Animais , Bactérias/classificação , Genômica , Filogenia , Água do Mar/microbiologia
3.
Stand Genomic Sci ; 8(3): 441-9, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-24501629

RESUMO

Serratia proteamaculans S4 (previously Serratia sp. S4), isolated from the rhizosphere of wild Equisetum sp., has the ability to stimulate plant growth and to suppress the growth of several soil-borne fungal pathogens of economically important crops. Here we present the non-contiguous, finished genome sequence of S. proteamaculans S4, which consists of a 5,324,944 bp circular chromosome and a 129,797 bp circular plasmid. The chromosome contains 5,008 predicted genes while the plasmid comprises 134 predicted genes. In total, 4,993 genes are assigned as protein-coding genes. The genome consists of 22 rRNA genes, 82 tRNA genes and 58 pseudogenes. This genome is a part of the project "Genomics of four rapeseed plant growth-promoting bacteria with antagonistic effect on plant pathogens" awarded through the 2010 DOE-JGI's Community Sequencing Program.

4.
PLoS One ; 6(5): e20237, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21633497

RESUMO

BACKGROUND: The extremely halophilic archaea are present worldwide in saline environments and have important biotechnological applications. Ten complete genomes of haloarchaea are now available, providing an opportunity for comparative analysis. METHODOLOGY/PRINCIPAL FINDINGS: We report here the comparative analysis of five newly sequenced haloarchaeal genomes with five previously published ones. Whole genome trees based on protein sequences provide strong support for deep relationships between the ten organisms. Using a soft clustering approach, we identified 887 protein clusters present in all halophiles. Of these core clusters, 112 are not found in any other archaea and therefore constitute the haloarchaeal signature. Four of the halophiles were isolated from water, and four were isolated from soil or sediment. Although there are few habitat-specific clusters, the soil/sediment halophiles tend to have greater capacity for polysaccharide degradation, siderophore synthesis, and cell wall modification. Halorhabdus utahensis and Haloterrigena turkmenica encode over forty glycosyl hydrolases each, and may be capable of breaking down naturally occurring complex carbohydrates. H. utahensis is specialized for growth on carbohydrates and has few amino acid degradation pathways. It uses the non-oxidative pentose phosphate pathway instead of the oxidative pathway, giving it more flexibility in the metabolism of pentoses. CONCLUSIONS: These new genomes expand our understanding of haloarchaeal catabolic pathways, providing a basis for further experimental analysis, especially with regard to carbohydrate metabolism. Halophilic glycosyl hydrolases for use in biofuel production are more likely to be found in halophiles isolated from soil or sediment.


Assuntos
Genoma Arqueal/genética , Halobacteriaceae/genética , Halobacteriaceae/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Betaína/metabolismo , Biodiversidade , Análise por Conglomerados , Galactose/metabolismo , Variação Genética , Sedimentos Geológicos/microbiologia , Glucuronatos/metabolismo , Glicerol/metabolismo , Halobacteriaceae/classificação , Filogenia , Propionatos/metabolismo , Microbiologia do Solo , Especificidade da Espécie , Microbiologia da Água , Xilose/metabolismo
5.
BMC Genomics ; 10: 145, 2009 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-19341479

RESUMO

BACKGROUND: Staphylothermus marinus is an anaerobic, sulfur-reducing peptide fermenter of the archaeal phylum Crenarchaeota. It is the third heterotrophic, obligate sulfur reducing crenarchaeote to be sequenced and provides an opportunity for comparative analysis of the three genomes. RESULTS: The 1.57 Mbp genome of the hyperthermophilic crenarchaeote Staphylothermus marinus has been completely sequenced. The main energy generating pathways likely involve 2-oxoacid:ferredoxin oxidoreductases and ADP-forming acetyl-CoA synthases. S. marinus possesses several enzymes not present in other crenarchaeotes including a sodium ion-translocating decarboxylase likely to be involved in amino acid degradation. S. marinus lacks sulfur-reducing enzymes present in the other two sulfur-reducing crenarchaeotes that have been sequenced -- Thermofilum pendens and Hyperthermus butylicus. Instead it has three operons similar to the mbh and mbx operons of Pyrococcus furiosus, which may play a role in sulfur reduction and/or hydrogen production. The two marine organisms, S. marinus and H. butylicus, possess more sodium-dependent transporters than T. pendens and use symporters for potassium uptake while T. pendens uses an ATP-dependent potassium transporter. T. pendens has adapted to a nutrient-rich environment while H. butylicus is adapted to a nutrient-poor environment, and S. marinus lies between these two extremes. CONCLUSION: The three heterotrophic sulfur-reducing crenarchaeotes have adapted to their habitats, terrestrial vs. marine, via their transporter content, and they have also adapted to environments with differing levels of nutrients. Despite the fact that they all use sulfur as an electron acceptor, they are likely to have different pathways for sulfur reduction.


Assuntos
Desulfurococcaceae/genética , Genoma Arqueal , Pyrodictiaceae/genética , Enxofre/metabolismo , Thermofilaceae/genética , Sequência de Aminoácidos , Carboxiliases/metabolismo , Desulfurococcaceae/classificação , Desulfurococcaceae/metabolismo , Transporte de Elétrons , Genômica , Metilmalonil-CoA Descarboxilase/metabolismo , Dados de Sequência Molecular , Filogenia , Pyrodictiaceae/metabolismo , Thermofilaceae/metabolismo , Transposases/genética
6.
J Bacteriol ; 190(8): 2957-65, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18263724

RESUMO

We report the complete genome of Thermofilum pendens, a deeply branching, hyperthermophilic member of the order Thermoproteales in the archaeal kingdom Crenarchaeota. T. pendens is a sulfur-dependent, anaerobic heterotroph isolated from a solfatara in Iceland. It is an extracellular commensal, requiring an extract of Thermoproteus tenax for growth, and the genome sequence reveals that biosynthetic pathways for purines, most amino acids, and most cofactors are absent. In fact, T. pendens has fewer biosynthetic enzymes than obligate intracellular parasites, although it does not display other features that are common among obligate parasites and thus does not appear to be in the process of becoming a parasite. It appears that T. pendens has adapted to life in an environment rich in nutrients. T. pendens was known previously to utilize peptides as an energy source, but the genome revealed a substantial ability to grow on carbohydrates. T. pendens is the first crenarchaeote and only the second archaeon found to have a transporter of the phosphotransferase system. In addition to fermentation, T. pendens may obtain energy from sulfur reduction with hydrogen and formate as electron donors. It may also be capable of sulfur-independent growth on formate with formate hydrogen lyase. Additional novel features are the presence of a monomethylamine:corrinoid methyltransferase, the first time that this enzyme has been found outside the Methanosarcinales, and the presence of a presenilin-related protein. The predicted highly expressed proteins do not include proteins encoded by housekeeping genes and instead include ABC transporters for carbohydrates and peptides and clustered regularly interspaced short palindromic repeat-associated proteins.


Assuntos
Vias Biossintéticas , DNA Arqueal/genética , Genoma Arqueal , Thermofilaceae/genética , Proteínas Arqueais/genética , Composição de Bases , Proteínas de Transporte/genética , DNA Arqueal/química , Microbiologia Ambiental , Genes Arqueais , Islândia , Dados de Sequência Molecular , Análise de Sequência de DNA , Thermofilaceae/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...